Reduced miR-181d level in obesity and its role in lipid metabolism via regulation of ANGPTL3.

Research output: Contribution to journalArticlepeer-review

5 Citations (Scopus)


Obesity impacts the endocrine and metabolic functions of the adipose tissue. There is increasing interest in the role of epigenetic factors in obesity and its impact on diabetes and dyslipidemia. One such substance, miR-181, reduces plasma triglyceride levels in mice by targeting isocitrate dehydrogenase 1. In the other hand, the adipocyte differentiation and lipid regulating hormone angiopoietin-like 3 (ANGPTL3) is a known regulator of circulating apolipoproteins through its inhibition of the lipoprotein lipase activity. We aimed to study the miR-181d expression in the blood and adipose tissue in a cohort of obese and non-obese people, assessing its possible role in obesity. We also aimed to confirm whether miR-181d can bind and regulate ANGPTL3. miR-181d expression levels were investigated in 144 participants, 82 who were non-obese (body mass index [BMI] < 30) and 62 who were obese (BMI > 30). miR-181d levels in plasma and adipose tissue were measured by RT-PCR. Hepatocyte cell cultures were assessed by overexpression and 3′-UTR-luciferase assays for miR-181d binding to its target protein and its effect on the protein. The plasma levels of ANGPTL3 were also measured by ELISA. The miR-181d levels were significantly lower in obese than in non-obese individuals. In vitro analysis confirmed miR-181 binding to and repression of the ANGPTL3 transcript. Obesity leads to alterations in miR-181d expression. Its downregulation in obese humans was inversely correlated with ANGPTL3, a protein involved in adipocyte differentiation and lipid metabolism. miR-181d can be used as an inhibitor of ANGPTL3 to reduce the TG plasma level.
Original languageEnglish
Article number11866
Pages (from-to)11866
JournalScientific Reports
Issue number1
Publication statusPublished - 14 Aug 2019


Dive into the research topics of 'Reduced miR-181d level in obesity and its role in lipid metabolism via regulation of ANGPTL3.'. Together they form a unique fingerprint.

Cite this